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1

The governing physical laws

The aim of this chapter is to introduce the basic physical laws which
govern the circulation of the atmosphere and to express them in convenient
mathematical forms. No attempt is made at either completeness or rigour
beyond the requirements of the later chapters. Those who wish for a
more detailed discussion are referred to one of the many excellent texts on
dynamical meteorology which are now available. Those by Holton (1992)
and by Gill (1982) are particularly recommended.

1.1 The first law of thermodynamics

The first law may be stated simply in its qualitative form: heat is a form of
energy. The transformation of heat energy into various forms of mechanical
energy is the process which drives the global circulation of the atmosphere
and which is responsible for the formation of the weather systems whose
cumulative effects define the climate of a particular region. These transforma-
tions will be discussed in more detail in Chapter 3. In this section, the first
law will be expressed in mathematical terms. But, first, it will be necessary
to consider the thermodynamic properties of the air which makes up the
atmosphere.

The ‘thermodynamic state’ of a parcel of air is defined by specifying
its composition, pressure, density, temperature, and so on. In fact, these
properties are not independent of one another, but are related through the
‘equation of state’ of the air.

For our purposes, only one constituent of the air varies significantly,
and that is water vapour. The remaining gases which make up the bulk
of the atmosphere are present in constant proportions, at least up to very
great heights. These are principally nitrogen and oxygen, with smaller
concentrations of argon and carbon dioxide. Other gases are present in very

1



2 The governing physical laws

Table 1.1. Composition of dry air

Gas Volume mixing ratio
Nitrogen (N;) 0.780 83
Oxygen (O3) 0.20947
Argon (Ar) 0.009 34
Carbon dioxide (CO,) 0.000 33

small amounts; some are important in determining the transparency of the
atmosphere to various frequencies of electromagnetic radiation, and some
play a crucial role in the chemistry of the atmosphere. But for our purposes,
we may ignore them. Table 1.1 summarizes the normal composition of dry
air.

We will return to water vapour shortly. If we consider ‘dry air’, then its
pressure p, temperature T and density p are related by the ‘ideal gas law’:

p=pRT. (L.1)

This equation of state needs modification at very high pressures and low
temperatures. But over the range of temperature and pressure encountered
in the atmosphere, it is perfectly adequate. The gas constant R is related to
the universal gas constant R* by

R=R'/m. (1.2)

where m is the mean (by volume) molecular weight of the cocktail of gases
comprising dry air. The equation of state, Eq. (1.1), means that it is only
necessary to know any two of p, T or p to specify the thermodynamic state
of the air completely. It is sometimes more convenient to work with ‘specific
volume’ « = 1/p (i.e. the volume occupied by a unit mass of air) rather than
with p.

The temperature of the air is simply a measure of the ‘internal energy’ of
the air, that is, of the energy which is associated with the random motion
of the molecules and possibly with their rotation and internal vibration. If
two masses of gas are brought into intimate contact, this internal energy is
rapidly shared between them and their temperatures become equal. When
their temperatures are unequal, a flow of heat from the hotter to the colder
mass takes place. An infinitesimal change of the internal energy U of a unit
mass of dry air is related to the temperature change by:

dU = ¢,dT, (1.3)
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where ¢, is the ‘specific heat at constant volume’.

If an infinitesimal quantity of heat dQ is added to an element of air, it
may contribute to an increase in its internal energy, or it may be converted
into mechanical energy, or a combination of the two. But the change of
internal energy plus the mechanical work done must balance the heat added.
This is the mathematical statement of the first law of thermodynamics:

dQ =dU + dw. (1.4)

Typically, work is done by the air parcel when it expands against the pressure
exerted by the surrounding gas. Assuming that the pressure of the element of
gas is equal to the pressure of its surroundings (always true if the expansion
is gentle), the work done is related to the change of volume:

dW = pda. (1.5)
Thus a working form of the first law of thermodynamics can be written:
dW = ¢, dT + pdo. (1.6)
A more convenient form is obtained using the equation of state, Eq. (1.1):
dQ = ¢,dT — adp, (L.7)

where ¢, = ¢, + R is the ‘specific heat at constant pressure’. This form
is useful since many atmospheric processes occur more nearly at constant
pressure than at constant volume.

A ‘thermodynamic process’ is a slow change of the thermodynamic state
of an element of air; it may be described by a curve on a ‘thermodynamic
diagram’ on which any two of the state variables are plotted. A particularly
important class of thermodynamic processes is the ‘adiabatic’ process, in
which no heat enters or leaves the element. From Eq. (1.7),

cpdT = adp, (1.8)
during an adiabatic process, or, integrating,

T = 0(p/px)", k = R/cy, (1.9)

where 0 is a constant of integration which may be interpreted simply as
the temperature at pressure p, during the adiabatic process; 6 is generally
called the ‘potential temperature’ and p, is usually (but arbitrarily) taken to
be 100kPa. Indeed, the potential temperature may be regarded as a new
thermodynamic variable and Eq. (1.9) as an alternative equation of state.
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Yet another form of the first law is obtained if Eq. (1.7) is written in terms
of potential temperature:

dQ = ¢, Td(In#). (1.10)

Finally, if the heat is added over a time dt, the rate of change of potential
temperature of the element is:
do 1 _.do
a—a(p/pR) —c—h——,@. (1.11)

The term dQ/dt is sometimes called the ‘diabatic warming rate’; 2 denotes
the rate of change of 6 due to heating. This is the rate of change of § when
a particular fluid element is followed, and is more usually written D8/Dt,
the ‘Lagrangian derivative’. This differs from the ‘Eulerian derivative’, which
measures the rate of change at a fixed point in space. If the gradient of 6 at
any instant is V6, then the difference between the Eulerian and Lagrangian
derivatives is simply the rate of change due to advection, —u - V6. Thus:
%g+u~V9=Q (1.12)

The quantity of moisture in the air may be measured by the mass mixing
ratio of water vapour r = p,/p4, p, being the mass of water vapour in a
unit volume and py the mass of dry air in the same volume. The saturation
mixing ratio r; is a function of temperature and pressure of the air, and
may be as large as 0.030 in the warmest parts of the tropics. Generally, it is
much less, with a typical value of r; of 0.010 at the surface. For an average
atmospheric temperature of 255K and pressure of 50kPa, r¢ = 0.005. The
equation of state of moist air is obtained by writing the total pressure as
the sum of the vapour pressure and the partial pressure of the dry air, the
ideal gas equation applying to both components separately with a suitable
gas constant. The result can be written:

(14 (Ry/Ry)r)
(1+7r

In fact, for most of the atmosphere, the difference between the equation of
state for moist air and that for dry air is not very large, and may frequently be
ignored when discussing the large scale circulation. The primary importance
of the variable moisture content of air is the huge latent heat of condensation
of water vapour, larger than that of any other common substance, which
means that very large amounts of heat are released when water condenses.
Equally, large amounts of heat must be supplied when water evaporates. A

p=Ry (1.13)
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quantity of heat
dQ = —Ldr (1.14)

is released when the mixing ratio is reduced by condensation, where L is the
latent heat of condensation. Thus if 10 mm of rain falls during a 24 hour
period, the release of latent heat amounts to 289 W m?, which is comparable
to the typical insolation per unit area.

An equation describing the evolution of the humidity mixing ratio is ana-
logous to the equation of conservation of energy. It is simply based on the
hypothesis that any change of the moisture content of an air parcel is due to
a rate of evaporation E into the parcel, or of condensation P taking water
vapour out of the parcel. Small amounts of water are created or destroyed by
chemical reactions, but these can generally be neglected. For our purposes,
it is often enough to suppose that any condensed water falls out of the air
immediately as rain, though some sophisticated models carry the suspended
liquid and solid water content of the air as separate variables. Then

or

5 tuVr=E—P. (1.15)

The Lagrangian rate of change of water mixing ratio leads to an important
contribution to the heating rate:

Dr
S=—L— =L(P —E). 1.16
5, = L(°P —E) (1.16)

This term is frequently dominant in the Earth’s atmosphere, particularly in
localized regions of persistent rainfall.

1.2 Conservation of matter

Consider some fixed volume of space V, enclosed by a surface 4. The mass
of air enclosed in this volume is:

m=/Vpd1:. (1.17)

Any change in this mass must be accomplished by a flux of mass into or out
of the volume, so that

—q/pdr=—/pu-ndA=—/V'pudr, (1.18)
ot Jy A |4

where the divergence theorem has been used. Since this must apply to any
arbitrary volume, the two integrands in the volume integrals must be equal,
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so that:

?
a—? +V- (pu) = 0. (1.19)

This is the full form of the ‘equation of continuity’. It may be simplified
further if the density is broken into a reference profile p,, which represents
the mean density at any height and depends only on height, and the de-
parture p, from this reference density. For flow in planetary atmospheres, the
variation of density in the vertical is very much larger than any horizontal
fluctuations. Then scale analysis shows that:

0
Ll <1V (pu)l, (1.20)
so that the continuity equation can be reduced to:
1 0pw
‘ ——2_=0. 1.21
V-v+ b oz (1.21)

This result would become invalid if the flow speed approached the sound
speed, in which case the full continuity equation, Eq. (1.19), must be used.

1.3 Newton’s second law of motion

Newton’s second law of motion is used to calculate how the motion of the
atmosphere evolves. It states that the acceleration of a parcel of air of unit
mass is equal to the vector sum of the forces acting upon it, that is,

Du
D = > F; (1.22)

This is frequently called the ‘equation of motion’ or the ‘momentum equa-
tion. The forces which we need to consider in the case of atmospheric
motion are:

(i) The gravitational force. We consider this to be a constant vector g directed
towards the centre of the Earth. It can be written as the gradient of a
‘gravitational potential’ V.

(ii) The pressure gradient force. Figure 1.1 shows two surfaces of constant pressure
a distance As apart. Consider a small volume of air, cross sectional area AA4
between them. The mass of air in the volume is pAAAs and the net force due
to the pressure of the surrounding air is

8
poAA — (Po + —ap
S

As) SA=— ’ %\ AsAA. (1.23)
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Fig. 1.1. The pressure gradient force.

The pressure gradient force per unit mass is therefore:
1
F,= —;Vp. (1.24)

(iii) The friction force. Friction is generally a result of turbulent exchanges of
momentum between the Earth’s surface and the overlying layers of air. Accurate
simple formulae for this transfer do not exist, and rather complex empirical
relationships have to be employed in global circulation models. Generally,
we will simply call the friction force &, and note that it will usually act in
such a direction as to reduce the wind towards rest. A very approximate
linear parametrization of friction will be used on occasions where an analytical
expression for friction is needed:

F=-2, (1.25)
TD
where 7, is a drag or ‘spin up’ timescale. Such a term represents an exponential
decay of the velocity towards zero in the absence of other forces. It is sometimes
called ‘Rayleigh friction’. A typical global mean spin up time for the Earth’s
atmosphere is around five days.

Equation (1.22) describes the acceleration of a parcel of air in an inertial
frame of reference, that is, in a frame of reference which is not accelerating
and which is therefore not rotating, It is usual to describe motion in the
atmosphere relative to a noninertial frame of reference which is embedded
in the rotating Earth. The relationship between acceleration in an inertial
frame of reference, denoted I, and in a uniformly rotating frame of reference,
denoted R, is derived, for example, in Pedlosky, page 17; the result is

(50) = (31), 7= (%57 om0
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Y 1

0

Fig. 1.2. A uniformly rotating frame of reference

Figure 1.2 illustrates the notation. u, is the velocity in an inertial frame
and u, is the velocity in a rotating frame. From now on, the velocities and
derivatives without any such subscript will be assumed to refer to a frame
which is rotating with the solid Earth.

The second term on the right hand side of Eq. (1.26) is the centripetal
acceleration. Since it is the gradient of a scalar, it introduces no structural
change to the equation of motion; it can be absorbed into the definition
of gravitational potential. The centripetal acceleration makes a very small
correction to the gravitational acceleration, which is largest at the equator.

Thus, Newton’s second law may be written:

%+u~Vu=2qu—%Vp+f. (1.27)

This has now been written in terms of the Eulerian rate of change of velocity.
The first term on the left hand side arises from the rotation of the frame
of reference and is a most important term for global scale circulations. It
is sometimes called the ‘Coriolis force’. Strictly, it should be regarded as
a ‘pseudo-force’, that is, a mental construct which is designed to make it
appear that Newton’s second law is holding despite the rotation of the frame
of reference. Note that since the Coriolis force always acts at right angles to
the fluid motion, it can do no work. Acting in isolation from other forces,
it will cause parcel trajectories to be circular, with radius |u|/(2]€2]). Such
motion is termed ‘inertial flow’.
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Fig. 1.3. Coordinates used to describe atmospheric motions relative to a spherical
planet.

1.4 Coordinate systems

Up to now, the equations governing the atmospheric circulation have been
expressed in a general vector notation. But for practical purposes, they
must be written in terms of the components of velocity, etc., in orthogonal
directions. This will lead us to consider the very marked asymmetry between
the vertical and horizontal directions, and thereby to simplify the equations,
obtaining a usable set for computation.

The Earth is nearly a sphere, and so it is natural to employ spherical
coordinates ¢ (latitude), A (longitude) and r (distance from the centre of
the Earth). In fact, it is possible (though not trivial) to show that the
slightly oblate shape of the Earth can be ignored, and that its effect can be
represented by small variations of g, the acceleration due to gravity, with
latitude if necessary. Recognizing that the depth of the atmosphere is very
small compared to the radius of the Earth a, we write:

r=a+z, with z < q, (1.28)

where z is the height above mean sea level. The three components of velocity
are denoted u (zonal), v (meridional) and w (vertical). Figure 1.3 defines
the notation. The equations of motion are derived in general curvilinear
coordinates in standard texts on fluid dynamics such as Batchelor (1967).
The results are quoted here for reference:
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Equations of motion:

a_“+_ﬁ_a_“+3@+ @-*-—t 4)_}_%
Ot  acos¢pdl  adg

. 1 0p
= 2Qvsin ¢ — 2Qw cos ¢ — pacos ¢ ER + 71 (1.29a)
@+—"—@+3@+w@+“—2tan¢+3‘f
0t acos¢pdl ado Jz  a
= —2Qusin ¢ — ———a—e + %> (1.29b)
pade
ow u ow  vow aw u? + v?)
et e W —
Ot acos¢p 04  ado a
=ZQucosq§——g—la—p+973. {1.29¢)
poz
Equation of continuity:
1 0u 1  Jd(vcos ) 1 0(pew)
_— — =0. 1.30
acosh ol acoshg  0p . oz (1.39)
Thermodynamic equation:
06 u 00 v 66 60 _9 (131)

3 T acos¢ai T adg
If the meridional extent of the motion is limited, it is often advantageous
to use a local Cartesian set of coordinates (x,y,z), where y = a(¢ — ¢g)
is the distance poleward from some reference latitude and x = adcos ¢ is
the eastward distance along the latitude circle. Such a coordinate system,
neglecting many of the curvature terms in Egs. (1.29a) — (1.31), simplifies
the equations without removing any of the primary physical processes they
represent. While it is inadequate for exact work, such as constructing
numerical models of the global circulation or constructing budgets of global
or zonal mean quantities, it often very helpful for expository purposes and
will be used frequently in later chapters.

1.5 Hydrostatic balance and its implications

The vertical component of the momentum equation is dominated by the
vertical pressure gradient term and the acceleration due to gravity. These
are many orders of magnitude larger than any of the other terms in the
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equation. Hence the atmosphere is very close to a state of hydrostatic
balance, in which:

op

5 =
This balance only breaks down for small scale phenomena, such as thunder-
storm updrafts and flow in the vicinity of very rugged mountain surfaces.
On scales greater than around 10km, hydrostatic balance is usually valid.

The contrast between the vertical scale of the global atmosphere, which

can be taken as 7 — 10 km, and its horizontal scale, of around 6000 km, means
that the vertical component of velocity is very much smaller than either of the
horizontal components. The stable stratification of the atmosphere and the
rotation of the system further inhibit vertical motion. This means that several
terms involving w in the governing equations, such as the 2Qw cos ¢ term
in the zonal momentum equation, Eq. (1.29a), can be neglected. The result
is the so-called ‘primitive equation set’, which is widely used for numerical
weather prediction and global circulation models. The primitive equations
on a spherical planet of radius a are set out in Table 1.2 for easy reference.
The quantity f = 2Qsin ¢ is twice the component of the Earth’s angular
velocity parallel to the local vertical, known as the ‘Coriolis parameter’.

—pg. (1.32)

Table 1.2. The ‘primitive’ equations

Equations of motion:

du u Ou viu Ju 1 dp

uv
5t + —acos¢ﬁ + a% +W§ + ;tand) = fo— paCOS(ba + #1, (1.33a)
ov u ov  vov v u? 1dp
E+ma+3%+wa+;tan¢—_fu_p_a%—*_jz’ (1.33b)
Hydrostatic equation:
op
2, = P8 (1.34)

Equation of continuity:
1 ou 1 d(vcos¢) +_1_6(pkw) _

acos¢ 04  acosdp 0 P 0z 0. (135)
Thermodynamic equation:
a0 u 00 vadb 00 _a (136)

% T acosgon Taos Ve
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Fig. 1.4. The pressure gradient term in pressure coordinates.

Returning to the hydrostatic equation, Eq. (1.32), the right hand side
of the equation is always negative, so that pressure always decreases with
height. In fact, integrating from height z to infinity (where p = 0):

p(z) = / ” pgdz. (1.37)

That is, the pressure at any level in the atmosphere is simply equal to the
weight of the overlying layers of air. The monotonic decrease of pressure
with height means that pressure (or indeed, any single valued, monotonic
function of pressure) can be used as a vertical coordinate just as well as can
height z. The advantage of this procedure is that the equations of motion
and the continuity equation are simplified. The disadvantage is that the
lower boundary condition is rendered more complicated.

The principal simplification arises in the pressure gradient terms. Consider
Fig. 1.4. An isobaric surface will be nearly, though not exactly, horizontal;
denote the angle between the normal to the pressure surface and the vertical
by «, and denote the magnitude of Vp by dp/ds; « is typically less than 1073,
From hydrostatic balance,

op
ht 4 1.
. cosa = pg, (1.38)
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so that the horizontal components of the pressure gradient become

— l@ sina = —gtana. (1.39)
p 0s

But tan a is simply the slope of the isobaric surface |(0Z /dx, 0Z /dy)|, where
Z denotes the height of the isobaric surface. It follows that in pressure
coordinates, the horizontal components of the pressure gradient force can
be written:
1dp 0z 10p 0z
—— =g, — = =—g . (1.40)
p Ox ox’  pady Jy
Using pressure as a vertical coordinate, vertical advection terms such as
w 0Q/0z transform to
90 0
- 4 1.41
"o = 9% (1.41)
where w = Dp/Dt is the pressure coordinate vertical velocity. The pressure
vertical velocity is approximately related to the geometric vertical velocity
by

O —pgw. (142)

Similarly, using the hydrostatic relationship, the continuity equation trans-
forms to

0w
V-v+ p =0. (1.43)

Here, the vector v denotes the horizontal component of the velocity vector,
(u, v,0).

The lower boundary condition, which in geometrical coordinates is simply
w = v - Vh, h being the height of the surface, is considerably less straight-
forward in pressure coordinates. In the first place, the pressure at the
ground fluctuates, so that the boundary moves. In the second, the surface
of the Earth is not a coordinate surface. It is sometimes enough to apply a
boundary condition w = 0 at p = p,, but this is certainly not adequate for
numerical modelling purposes.

The ‘sigma coordinate’ system is widely used in numerical models, and
combines the simple form of the pressure gradient force in pressure co-
ordinates with the straightforward lower boundary condition of geometric
coordinates. Define the vertical coordinate as

o = p/ps, (1.44)

where p; is the actual surface pressure. The Earth’s surface is therefore the
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surface ¢ = 1. The vertical advection terms can be written:
Wi _ ;92
62 5;’
where 6 = Dg /Dt is the equivalent of vertical velocity. The boundary
conditions are simply 6 = 0 at ¢ = 0 and ¢ = 1. The continuity equation

is rendered more complicated; it becomes a prognostic equation for surface
pressure:

(1.45)

6ps 06
T + V- (psv) + psa =0. (1.46)

This rather strange equation relates the rate of change of surface pressure to
the divergence at an arbitrary level in the atmosphere. The vertical advection
term relates the flow at the chosen level to that at other levels. The equation
may be integrated with respect to ¢; making use of the boundary conditions
yields:

5ps + / V- (pov)do = (1.47)

For analytical work, the extra complications of the sigma coordinate system
makes it impractical. It is usually reserved for numerical integration.

It is sometimes helpful, especially for work in the stratosphere, to introduce
a ‘pseudo-height’, proportional to In(p):

7 = —HIn(p), (1.48)

where H is a constant called the ‘pressure scale height’. Integration of the
hydrostatic relation shows that this is equal to geometric height for the special
case of an atmosphere whose temperature does not change with height. The
temperature in the lower stratosphere varies only weakly with height. An
equation set based on In(p) retains the advantages of a simple pressure
gradient term, but expands the rarefied upper levels of the atmosphere.

Other, more complicated, vertical coordinates, such as the potential tem-
perature 6 (‘isentropic coordinates’), as well as hybrid coordinates which are
defined to be sigma coordinates near the ground and pressure coordinates
at higher levels, will not be discussed further here. The interested reader is
referred to texts on dynamical meteorology for a discussion of generalized
vertical coordinates.

1.6 Vorticity

Taking the curl of the momentum equation gives a vorticity equation where
relative vorticity & = V x u. In some ways, the vorticity equation is a
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>

Squashing \J

Stretching

Fig. 1.5. Vortex stretching mechanism for generating relative vorticity.

more convenient way of expressing atmospheric dynamics since, in pressure
coordinates, it involves no explicit reference to the pressure field. After some
manipulation, the full vorticity equation may be written:

%+u-V§ =2Q+& - Va—-(2Q+ &) V- -u+
In fact, the large scale dynamics of the atmosphere are determined by
the vertical component of the vorticity. The numerically larger horizontal
components play a less active role in determining the evolution of the
meteorological flow. The vertical component of Eq. (1.49) is most simply
written in pressure coordinates. The third term on the right hand side is zero
since we are concerned with the component of vorticity perpendicular to
pressure surfaces. The second term on the right hand side is zero by virtue of
continuity, Eq. (1.35), and so the result is:

%+u-V§=(f+§)a—w+k-(Vx97). (1.50)

ot op
Meteorologists frequently refer to this vertical component of the relative
vorticity simply as ‘vorticity’. The Coriolis parameter f is sometimes referred
to as the ‘planetary vorticity’. The absolute vorticity, (f + £), has a simple
physical interpretation. It is simply twice the angular velocity of the air
parcel about a vertical axis. On a rapidly rotating planet such as the Earth,
one might suspect that this rotation is generally dominated by the rotation
of the planet itself. This turns out to be the case, a fact which will be used
in Section 1.7 to derive the ‘quasi-geostrophic’ approximation.

Vp x Vp

o TVXF. (149)
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The crucial term in governing changes to the vorticity is the first remaining
term on the right hand side of Eq. (1.50), which represents the generation of
vorticity by stretching of vortices as a result of vertical motions. If the
vertical velocity stretches a column of air, the column will assume a smaller
radius and will rotate more rapidly about its vertical axis, that is, its vorticity
will increase. Conversely, squashing of the column will reduce its vorticity.
Figure 1.5 illustrates vortex stretching,

Friction generally acts to reduce the relative vorticity towards zero. New-
tonian friction can be written in terms of vorticity as

k-(VxF)=—>, (1.51)

TD
a term which represents an exponential decay of the relative vorticity towards
zero in the absence of other processes. In fact, Ekman layers, which result
from laminar flow over a solid rotating boundary, give rise to precisely such
a dissipative term, which arises because the friction near the surface induces
small vertical velocities at the top of the boundary layer. The magnitude of
these vertical motions is proportional to the relative vorticity just above the
boundary layer, and their direction is such as to induce vortex squashing
when the interior relative vorticity is positive, and vice versa. Pedlosky gives a
good account of this ‘spin up’ process. The structure of the Ekman layer is a
poor approximation to the observed structure of the atmospheric boundary
layer, but this effect of spinning up of the interior vorticity is a helpful
qualitative model of the effect that boundary layer friction has on vorticity.

1.7 The quasi-geostrophic approximation

Away from the equator, the large scale meteorological flow is close to a
state of geostrophic balance. That is, the dominant terms in the horizontal
momentum equations, Egs. (1.33a, b), are the Coriolis terms and the pressure
gradient terms. Thus, the ‘geostrophic’ velocity field is determined by the
gradients of the geopotential height:

v —_892 _80Z
£ foyt fox
Differentiating these relationships and making use of the hydrostatic equa-
tion, Eq. (1.32) and the definition of potential temperature, the vertical

variations of u, and v, are related to horizontal variations of potential
temperature:

(1.52)

dug _hoO v, hoo
o Foy b fox (1.53)
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where

h(p) = g (i)x. (1.54)

Equation (1.53) shows that the geostrophic wind and temperature field are
not independent, but are related in a state of ‘thermal wind balance’. A
crucial aspect of any process which (for instance) changes the temperature
field is that there must be a compensating adjustment of the wind field in
order to preserve thermal wind balance. Examples of this adjustment process
will be discussed in Chapters 4 and 5. As an alternative to Eq. (1.53), the
variation of geostrophic vorticity with height can be written:

o5 h (3% %0
E = —? (W + a—yz . (1.55)

These relationships between the geostrophic velocity (or vorticity) fields and
the geopotential height and temperature fields can be used to simplify the
governing equations, giving an approximate set which is called the ‘quasi-
geostrophic’ equation set. This has now fallen out of favour as an equation
set for modelling the atmospheric circulation since it is not uniformly valid as
one approaches the equator; but it remains of great value in diagnosing, and
gaining insight, into the dominant dynamical processes in the midlatitude
and subtropical regions.

Although Eq. (1.52) represents the dominant terms in the momentum
equations, it is of little use for predicting the evolution of the flow. The time
derivative terms have been dropped, and so the approximated equations are
simply diagnostic, relating the velocity to the pressure field. To determine
the evolution of these fields, some ageostrophic effects must be retained.
The approach in this section will be via the vorticity equation. First, it is
necessary to examine the conditions for which geostrophic balance will hold.

Suppose that a typical horizontal velocity has magnitude U and that it
varies over a characteristic length scale L. In the Earth’s midlatitudes, U is
around 10 m s~! and L might be of the order of 10° m. Then the typical
magnitude of the horizontal advection terms in the momentum equations
will be U?/L. The magnitude of the Coriolis term will be fU. The ratio of
the two is called the ‘Rossby number’ Ro:

UL _ U _
fu fL
A necessary condition for geostrophic balance to be achieved is that the

Rossby number be small. Other conditions are that the friction term be
small, and that the trajectories of fluid elements be only gently curved. For

(1.56)



